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Abstract  

We present a natural  generalization of  the Schwarzschild solution. It is an exact  solution 
of  the  vacuum Einstein field equat ions and is interpreted as the  gravitational field o f  a 
nullicle (nuU-palticle). 

1. Introduction 

The problem of finding an exact sotution of the vacuum Einstein field 
equations corresponding to a massless particle or nullicle has attracted some 
attention in recent years. In the linearized theory the fields of  beams and 
pulses of  light have been studied long ago by Tolman (1934) whose work has 
been extended into the realm of the exact theory by Bonnor (1969). Bonnor 
(1970a, 1970b) has extensively studied the gravitational fields of null fluids. 
More recently Aichelburg & Sexl (1971) have described a solution of the 
vacuum field equations for a massless particle which they obtain from the 
Schwarzschild solution using a Lorentz transformation. The Riemann tensor 
vanishes everywhere except on a null 3-surface which contains the null world- 
line of  their massless particle. On the 3-surface the Riemann tensor becomes 
infinite. In this paper we adopt a different point of view. 

When the Schwarzschild solution is written in the Kerr-Schild (1965) form 
we are provided with a natural background Minkowski space-time (cf. Section 
2). The source of  the solution may then be considered as being a time-like 
geodesic in this background space-time (Robinson & Trautman, 1962). In 
this paper we demonstrate that if one takes the same metric form but assumes 
that the source is a null geodesic in the background space-time then the metric 
is again an exact solution of the vacuum Einstein field equations. The field 
remains Petrov Type D but is singular not only on the world-line but also on 
a null 3-surface containing the world-line in the background space-time. The 
field (Riemann tensor) falls off smoothly to zero away from this 3-surface. 
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2. The  Me t r i c  F o r m  

We begin by describing briefly how to construct the Kerr-Schild form of  
the Schwarzschild solution before proceeding to the null case. 

Le t  X a = xa (u )  be a time-like world-fine in Minkowski space-time with 
metric rlab = diag (1, 1, I ,  - 1 )  and having u as proper-time along it. Let it be 
the history of  a particle of  proper-mass m (= constant). The unit tangent to 
this world-line is denoted by X a = d x a / d u  so that ~?ab),a~k b = --1.  I f X  a are the 
coordinates of  an event o f f  the world-fine and i f x a ( u )  is the event of  inter- 
section of  the past null cone with vertex X a and the world.line, then the vector 
~a = x a  _ xa (u )  is a null vector. Defining the (Lorentz) scalar r = -rTa~xa~ b we 
easily see that r is positive and vanishes ff and only if X a ties on the world-line. 
It is called the 'retarded distance' of  X a from the world-fine (cf. Synge, 1970). 
We can utilize this retarded construction to raise u, k a, pa = dXa/du,  r to the 
status of  re tarded  f i e lds  on Minkowski space-time by  paralM propagation 
along the generators of  the future null-cones with vertices on the world-line 
(in the case of  u we define u ( X )  = u (x ) ) .  Their derivatives are then readily 
evaluated and one finds (Synge, 1970) 

U,a = - r - l ~ a ;  ~ka,b = - - r - I f ,  lamb (2. la) 

~a,b ='Qab +r- lXa~b;  r,a =- -Xa  + B~a (2.1b) 

where B = (1 - W)r  -1 and W = - p a ~  a. Defining the null vector k a = r -1 ~a we 
introduce the metric? 

2m 
gab = Tab + - -  kakb  (2.2) 

I" 

This metric has Kerr-Schild form with k a null with respect to gab and r/ab, the 
metric of  the background Minkowski space-time. One can easily show, using 
the formulae (2.1), that (2.2) is a solution of  the vacuum Einstein equations, 
Rab = 0, provided pa = 0, i.e. provided the world-line in the background space- 
time is a geodesic. Choosing 0, ~, r, u as coordinates one finds that in this case 
the metric (2.2) provides the line element 

(1 2 m )  -2 
ds 2 = r2(dO 2 + sin 2 0 dq~ 2) - 2 du  dr  - - -7 -  d u  (2.3) 

which is commonly called the Eddington form of  the Schwarzschild solution. 
We now take the metric (2.2) and assume that the world-line X a = x a ( u )  is 

a null geodesic in the background space-time with u an affine parameter along 
it so that 

U a = 0, 7?abXah b = 0 (2.4) 

~: We choose units for which c = G = t tilroughout. 



THE GRAVITATIONAL FIELD OF A NULLICLE 421 

We shall refer to this world-line as the history of  a nullicle. The constant m 
we shall take to be the energy of  the nullicte b y  analogy with the Schwarzs- 
child case above. The formulae (2.1) become simplified to read 

U,a = - r - l G ;  ~ka, b = 0 (2.5a) 

~a,b =7lab +r-l~ta~b; r,a = - X a  (2.5b) 

Since the scalar r is given by 

r = - -  "rlab~ka~ b = - -  T l a b ~ k a x  b + V l a b ~ k a x b ( b t )  (2.6) 

we see that  it vanishes when X a = xa(u),  i.e. when the field event X a lies on 
the world-lime. However r also vanishes when X a lies on the null 3-surface 

£:  r~ab x a x  b = Co (2.7) 

where Co = ~ab~kax b, which is constant ( independent of  u) on account o f  (2.4). 
This null 3-surface has normal X a and contains the null geodesic X a = xa(u)  
(see figure). 

I P(X) ~ C  
)a 

NXXX 
1I 

P'(x') 

Figure l . -The  null world-line C in the background Minkowski space-time with the null 
3-surface I3 containing C. The field events P and P'  in regions I and II respectively are 
also shown. The lines QP and QP' are null. 

We see from the figure that  if the field event P(X) lies in the region I of  
Minkowski space-time the retarded construction is valid. However moving to 
the opposite side o f  the null 3-surface ~ the retarded construction breaks 
down since the past null-cone with vertex at the field event P ' ( X ' )  will not 
intersect the world-line X a = xa(u).  In this region we must define advanced 
f ieMs u, X 'a, r' by parallel propagation along the generators o f  the past null- 
cones with vertices on the world-line (in the case of  u we have u ( X ' )  = u(x)) .  
In addit ion we have, in this case, 

r' =rlabX'a~'b; ~,b = X ' b  _ X b ( U )  (2.8) 
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and so the formulae (2.5) become, in region II, 

U,a =r'-l~'a; 3.'a,~ =0 (2.9a) 

~'a,b = ?'lab --  r Aa~b ; r,a = Xa (2.9b) 

Inspecting the formulae (2.5) and (2.9) we notice that we may pass from (2.5) 
to (2.9) by formally changing the sign ofr. Hence the metric (2.2) for our 
space-time becomes 

2rn 
gab = 7?ab + ~ r  I kakb, r ¢ 0 (2.10) 

with r > 0 in region I and r < 0 in region II. It remains for us to check that 
(2.10), subject to the conditions (2.4) and the formulae (2.5) and (2.9) 
(remembering ka = r -1 ~a) is an exact solution of the vacuum Einstein field 
equations. 

3. The Riemann Tensor and FieM Equations 

We shall consider only the region r > 0. The metric (2.10) may thus be 
written 

where 

The Riemann tensor is 

gab = B a b  + Tab (3.1) 

"/a~ = 2m kakb 2m 
r = - ~  ~a~b (3.2) 

where 

and 

Rabcd  = Labcd  + Qabcd 

1 
Labcd  = 7('gad, bc + 7bc,  ad --  7ac, bd --  "~bd, ac) 

(3.3) 

(3.4) 

Qaboa = g m  ([ad, pl  [bc, ql - [ac,p] [bd, q]) (3.5) 

[ad, p] = ½(Tpa,d + "/dp,a -- Tad, p) (3.6) 

A straightforward but tedious calculation using the formulae (2.4) and (2.5) 
yields 

2m + 3m {Xa(~crlbd ~a71bc) Labed = - j  (rlaer~ba -- r~ad~bc) r 4 

6m 

+ x a ( ~ b ~  - ~a~b~)) +-7-  {~a~ax~xc + ~ x ~ x ~  

- -  ~b ~d~ka~kc --  ~a~c)kb )kcl } (3.7) 
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and using the result 

2m a b ~a 

we find 

423 

(3.8) 

2/72 2 
Qabca = 7 -  {~a~drlbc + ~b~cr~ad -- ~a~crlbd -- ~b~arlac} (3.9) 

We now calculate the Ricci tensor from 

Rbc : JRabca  (3.10) 

using (3.8), and find that 

.Rb c = r~adLabcd (3.11) 

so that the non-linear part of  the Ricci tensor vanishes for the metric (2.10). 
This appears to be a common property of solutions with null sources. Both 
Bonnor (1969) and Aichelburg & Sexl (1971) found their solutions to have 
this property. However it is certainly not confined to null sources for it is also 
true of  the Schwarzschild solution (2.2). The important result of  our work is, 
however, that the right-hand side of  (3.11) also vanishes and thus the metric 
(2.10) is an exact solution of  the vacuum field equations Rbc = 0 and may be 
interpreted as giving the gravitational field of  a nullicle of  energy m. 

4. Discussion 

The Riemann tensor for our solution, given by (3.3), (3.7) and (3.9), is of 
Petrov Type D and/c a is a principal null direction so that 

Rabc[clke ] kb k c = 0 (4.1) 

with the scalar products here calculated with the fult metric gab. The Riemann 
tensor is singular on r = 0, i.e. on the null 3-surface in the background Minkowski 
space-time. From (3.7) and (3.9) we see that 

Labed = O(r-3), Qabcd = O(r -4) (4.2) 

and thus Labccl is the dominant part of  the Riemann tensor from large r away 
from r = 0. It is interesting to note that 

Labc[ctkel k b kc = 0 (4.3) 

with the scalar products calculated with either of  the metrics r/ab or gab. In 
addition 

gab~a~v b = 2m > 0 (4.4) 
r 

so that, as r -~ 0% ?a becomes null with respect to the full metric gab and also 
w e have 

Labc[dke] ~k b ~k c = 0 (4.5) 
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where the scalar products are calculated with Tab. Hence we conclude from 
(4.3), (4.4) and (4.5) that /c  a, k a are both principal null directions o f  the 
Riemann tensor for large values of  r. 
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